8 research outputs found

    Dynamic adversarial mining - effectively applying machine learning in adversarial non-stationary environments.

    Get PDF
    While understanding of machine learning and data mining is still in its budding stages, the engineering applications of the same has found immense acceptance and success. Cybersecurity applications such as intrusion detection systems, spam filtering, and CAPTCHA authentication, have all begun adopting machine learning as a viable technique to deal with large scale adversarial activity. However, the naive usage of machine learning in an adversarial setting is prone to reverse engineering and evasion attacks, as most of these techniques were designed primarily for a static setting. The security domain is a dynamic landscape, with an ongoing never ending arms race between the system designer and the attackers. Any solution designed for such a domain needs to take into account an active adversary and needs to evolve over time, in the face of emerging threats. We term this as the ‘Dynamic Adversarial Mining’ problem, and the presented work provides the foundation for this new interdisciplinary area of research, at the crossroads of Machine Learning, Cybersecurity, and Streaming Data Mining. We start with a white hat analysis of the vulnerabilities of classification systems to exploratory attack. The proposed ‘Seed-Explore-Exploit’ framework provides characterization and modeling of attacks, ranging from simple random evasion attacks to sophisticated reverse engineering. It is observed that, even systems having prediction accuracy close to 100%, can be easily evaded with more than 90% precision. This evasion can be performed without any information about the underlying classifier, training dataset, or the domain of application. Attacks on machine learning systems cause the data to exhibit non stationarity (i.e., the training and the testing data have different distributions). It is necessary to detect these changes in distribution, called concept drift, as they could cause the prediction performance of the model to degrade over time. However, the detection cannot overly rely on labeled data to compute performance explicitly and monitor a drop, as labeling is expensive and time consuming, and at times may not be a possibility altogether. As such, we propose the ‘Margin Density Drift Detection (MD3)’ algorithm, which can reliably detect concept drift from unlabeled data only. MD3 provides high detection accuracy with a low false alarm rate, making it suitable for cybersecurity applications; where excessive false alarms are expensive and can lead to loss of trust in the warning system. Additionally, MD3 is designed as a classifier independent and streaming algorithm for usage in a variety of continuous never-ending learning systems. We then propose a ‘Dynamic Adversarial Mining’ based learning framework, for learning in non-stationary and adversarial environments, which provides ‘security by design’. The proposed ‘Predict-Detect’ classifier framework, aims to provide: robustness against attacks, ease of attack detection using unlabeled data, and swift recovery from attacks. Ideas of feature hiding and obfuscation of feature importance are proposed as strategies to enhance the learning framework\u27s security. Metrics for evaluating the dynamic security of a system and recover-ability after an attack are introduced to provide a practical way of measuring efficacy of dynamic security strategies. The framework is developed as a streaming data methodology, capable of continually functioning with limited supervision and effectively responding to adversarial dynamics. The developed ideas, methodology, algorithms, and experimental analysis, aim to provide a foundation for future work in the area of ‘Dynamic Adversarial Mining’, wherein a holistic approach to machine learning based security is motivated

    The GC3 framework : grid density based clustering for classification of streaming data with concept drift.

    Get PDF
    Data mining is the process of discovering patterns in large sets of data. In recent years there has been a paradigm shift in how the data is viewed. Instead of considering the data as static and available in databases, data is now regarded as a stream as it continuously flows into the system. One of the challenges posed by the stream is its dynamic nature, which leads to a phenomenon known as Concept Drift. This causes a need for stream mining algorithms which are adaptive incremental learners capable of evolving and adjusting to the changes in the stream. Several models have been developed to deal with Concept Drift. These systems are discussed in this thesis and a new system, the GC3 framework is proposed. The GC3 framework leverages the advantages of the Gris Density based Clustering and the Ensemble based classifiers for streaming data, to be able to detect the cause of the drift and deal with it accordingly. In order to demonstrate the functionality and performance of the framework a synthetic data stream called the TJSS stream is developed, which embodies a variety of drift scenarios, and the model’s behavior is analyzed over time. Experimental evaluation with the synthetic stream and two real world datasets demonstrated high prediction capability of the proposed system with a small ensemble size and labeling ratio. Comparison of the methodology with a traditional static model with no drifts detection capability and with existing ensemble techniques for stream classification, showed promising results. Also, the analysis of data structures maintained by the framework provided interpretability into the dynamics of the drift over time. The experimentation analysis of the GC3 framework shows it to be promising for use in dynamic drifting environments where concepts can be incrementally learned in the presence of only partially labeled data

    Don’t Pay for Validation: Detecting Drifts from Unlabeled data Using Margin Density

    Get PDF
    AbstractValidating online stream classifiers has traditionally assumed the availability of labeled samples, which can be monitored over time, to detect concept drift. However, labeling in streaming domains is expensive, time consuming and in certain applications, such as land mine detection, not a possibility at all. In this paper, the Margin Density Drift Detection (MD3) approach is proposed, which can signal change using unlabeled samples and requires labeling only for retraining, in the event of a drift. The MD3 approach when evaluated on 5 synthetic and 5 real world drifting data streams, produced statistically equivalent classification accuracy to that of a fully labeled accuracy tracking drift detector, and required only a third of the samples to be labeled, on average
    corecore